Strategies to Extend Battery Life in Embedded Systems
by

Neil Puthuff
Field Applications Engineer
Green Hills Software
Santa Barbara, CA
805-965-6044
neil.puthuff@ghs.com

Introduction

As data, voice, fax, and video communications converge, today’s and tomorrow’s
advanced telecommunications devices are entering the marketplace. With end-users
demanding expanded functionality and performance, product designers are forced to
incorporate increasingly power-hungry features. Yet, form factors, extended battery life,
and other advanced features remain key design parameters designers must balance.

Power efficiency is particularly sensitive in such battery-powered devices as cell phones
and PDAs. As these more complex applications require greater CPU resources, power
usage can become the critical factor. Effective power usage translates directly into key
design issues such as battery life, battery size, and the overall weight of the final product.
The formula for success is very straightforward: Increases in power efficiency will allow
for extended battery life or reductions in battery size. It’s easy to see why embedded
system designers are therefore constantly on the lookout for new power-saving tricks.

Traditionally, designers have relied on hardware based strategies to reduce the power
consumption in an embedded system. These approaches include reduced voltages,
improved processes, and greater control over power use. These approaches have worked,
especially when the CPU is in a suspended state. The following graph shows the active
and standby power consumption of several popular CPUs.

[Insert Fig 1: CPU Active and Suspended Power Dissipation]

This graph clearly demonstrates that the more often the CPU is in a suspended state, the
lower the overall power consumption will be, resulting in longer battery life. This often
overlooked fact provides a new opportunity for portable system designers. This new
method imposes no per unit cost penalty, requires no changes to circuitry, and can also
increase the amount of available CPU processing power. The secret: Use the best
optimizing compiler you can buy.

The Compiler: The Low Cost Power Saving Component



Every instruction executed by an embedded microprocessor represents a drain on the
battery. If an embedded program can use few instruction cycles for a given function, the
CPU will be in a suspended state sooner. This results in decreased battery use, meaning
longer battery life.

To achieve a suspended CPU state more frequently, the designer of a portable embedded
project can structure the embedded software to periodically execute code, then suspend
the CPU until the start of the next execution period. The power consumed by such an
application will follow the general pattern shown below in Fig. 2.

[Insert Fig. 2: CPU Active and Suspended State Battery Drain]

In this general application, the CPU executes a set of instructions and goes into a low
power suspended state. If the functions employed in an application can be optimized to
execute with a reduced set of instructions, then the CPU could suspend operations sooner,
thus extending the battery life. The key is to optimize code so it executes more quickly.

One approach is for a skilled software engineer to produce the application in hand-coded
assembly language. Unfortunately, coding in assembly language is an inefficient and
error-prone software development process. This approach usually results in prohibitively
long product development cycles.

High level languages such as C, C++, and Embedded C++ enable much more efficient
and maintainable software development processes. With these languages, high-speed
execution depends on the compiler and the software engineer’s knowledge of the
compiler and its tools. Optimizing compilers generate embedded software that runs
faster than unoptimized — sometimes twice as fast or more. The software engineer can
use a number of different strategies available in the compiler, sometimes at the expense
of a larger program size in memory. When a development team selects a compiler, it is
therefore important that the compiler offer a large number of optimization strategies and
options.

Accessibility is almost as important as the compiler’s skill at generating optimized code.
If the software engineer can’t access and understand the workings of the compiler, even
the smartest optimizations are not helpful. Most compilers support a set of command-line
switches to implement various optimization strategies. Some provide the software
engineer with an easy-to-use graphical interface to set optimization options. For
example, the screen in Fig. 3 illustrates an interface the software engineer can easily use
to set optimizations at the function, file, subproject, or program level.

[Insert Fig 3: Optimization Options for Green Hills MULTI® IDE Program Builder]
Code Optimization Strategies

Each of the following five code optimization strategies briefly describes the theoretical
circumstance for use, possible risks, and the likely benefit.



1. Inlining

Circumstance: In a program, the main body of code makes calls to a set of functions.
Each time an outside function is called, CPU cycles are consumed as overhead in saving
and restoring registers and passing values to and from the called function. Inlining is a
potentially useful optimization strategy when one function is called hundreds of times
from the same place in the main body of the code. Every time this function is called,
cycles are wasted in the calling overhead. An optimization strategy to solve this problem
is to insert the called function into the main body of code. This also replaces the call to
the function with a copy of the entire function. This is known as “inlining a function.”

The software engineer runs the risk that aggressive inlining will substantially increase the
code size. With simple inlining strategies, a copy of the entire function will be placed at
every place within a program that it's called. Improvements in compilers now allow the
software engineer to selectively inline functions on a file-by-file basis.

2. Loop unrolling

Another popular optimization strategy is loop unrolling. Consider the following C code
section:

for(ilndex=255 ; ilndex ; ilndex--) {

/1

// perform some repetitive loop operation here

/1

}

Unoptimized, this code will execute something like this:

A. initialize the loop counter to 255

B. test if loop counter = 0 then done

C. perform the loop operation

D. decrement the loop counter

E. jump back to B (above)

This sequence incurs the overhead of decrementing, jumping, and testing 256 times
before the loop is complete.

To optimize this circumstance, the compiler deploys the "loop unrolling" optimization
strategy. Now the same code executes like this:

A. initialize the loop counter to 255

B. test if loop counter = 0 then done

C. perform the loop operation

D. perform the loop operation

E. perform the loop operation

F. perform the loop operation

G. subtract 4 from the loop counter

H. jump back to B (above)

The overhead of decrementing, jumping, and testing has been reduced to one
quarter of its original amount, at the expense of increased code size.

3. Remove loop invariant expression out of loops



In this unoptimized loop operation, the calculation of ((iCoef*6/3) occurs on every pass
through the loop — even though the resulting value never changes.

int iCoef=10, j=30;

int iArray[30];

while(j)

{

iArray[--j]=((iCoef * 6) / 3);

}

Good coding practice (experience gained with unoptimizing compilers) encourages the
software engineer to move the invariant value from the inside to the outside of the loop.
Modern optimizing compilers will automatically perform this

move for the engineer.

4. Register caching invariant memory references over loops

Similar to the above, the main body of the code makes repeated accesses to memory
locations that don't change. The compiler can implement an optimization that accesses
the memory once at the beginning of the loop and stores its value in a CPU register where
it can be quickly accessed.

5. Rotate loop termination tests to the bottom

In the above example for loop unrolling (#2 above), the test for when the loop
operation was finished was performed at the top of the loop. When the loop

is finished, it will jump to the start of the loop (to test for loop completion), then jump
back to the end of the loop to exit. Placing the loop test at the end of the loop can
eliminate this set of jump operations, as follows:

A. initialize the loop counter to 255

B. perform the loop operation

C. decrement the loop counter

D. test if loop counter does not equal 0 then jump back to B (above)

Optimization Example on a PowerPC:

The following example code illustrates the advantages a good compiler capable of a wide
variety of optimizations. This code segment contains a loop similar to the types of loops
many designers would incorporate in their portable or battery-operated designs. [See Fig.
4 for graphic comparison of unoptomized code vs. the two different optimization
approaches discussed below.]

int main(void)

{

volatile char j[256], 1[256], m[256];
int 1, k=8;

for(i=255;1;1--)

{

int val = m[i] + 1;

ifGli~1[])



val = val * k;

}

m[i] = val;
}
}

Compiled, but with no optimization, the code above requires 12,753 clock cycles and 25
instruction words and looks like this:

stwu sp, -776(sp)

li r9 <k>, 8 // int 1, k=8;
li r8 <i>, Oxff // for(i=255 ;1 ;1--)
addir12, sp, 8 //int val = m[i] + i;

addrl2, rl12, r8 <i>

Ibz r12, 0(r12)

add r10 <val>, r12, 18 <i>

addi r12, sp, 0x108 /1 HG[AT>1[1])
addrll, rl12, r8 <i>

addi r12, sp, 0x208

addrl2, rl12, r8 <i>

Ibzrl1, O(rl1)

Ibz r12, 0(r12)

cmplw rll, r12

ble main+0x40 (0x10110)

mullw r10 <val>, r10 <val>, 19 <k> // val = val * k; }
addir12, sp, 8 // m[i] = val;
addrll, rl12, r8 <i>

clrlwirl2, r10 <val>, 24

stbr12, O(rl1)

addi r8 <i>, r8 <i>, -1

cmplwi r8 <i>, 0

bne main+0xc (0x100dc) N} }
addi sp, sp, 0x308

blr

When the loop and speed optimization options are selected (see Fig. 3) as optimizing
strategies, the following compiled code now requires only 6,011 clock cycles and 19
instruction words. The compiler optimizes the code to take advantage of the PowerPC’s
hardware loop capabilities and also replaces the “multiply” instruction with a faster
executing “shift” instruction.

li r10 <i>, Oxff //int 1, k=8;
stwu sp, -776(sp)

addi r6, sp, 0x308

addi 9, sp, 0x208

addirll, sp, 0x108



li r5, Oxff // for(i=255 ;1 ;1--)

mtctr 5
Ibzu r12, -1(16)
Ibzu 17, -1(r11) /MG {

Ibzu 18, -1(19)

cmplw 17, 18

addrl12,rl12, r10 <i>

ble main+0x38 (0x10108)

slwirl2,rl2,3 // val = val * k; }
stb r12, 0(r6) // m[i] = val;
addir10 <i>, r10 <i>, -1

bdnz main+0x1c (0x100ec) /1'}}

addi sp, sp, 0x308

blr

The resulting compiled optimized code requires less memory and operates twice as fast
as the same compiled, but unoptimized code. When the code is optimized totally for
speed, based primarily on loop unrolling (example not shown), the speed improves to
5,744 clock cycles, a 4.6% improvement. However, the code size swells almost 10 times
to 185 instruction words.

Conclusion

Designers of portable and battery-operated devices have a new ally, the optimizing
compiler, in their on-going struggle to balance increasingly power-hungry feature sets,
smaller form factors, and extended battery life. Intelligently applied, an optimizing
compiler can often reduce the clock cycles necessary to execute a code segment and/or
reduce the memory required. This leaves the processor in standby mode more frequently,
reducing the drain on the battery, thus extending battery life.

The examples shown above demonstrate that a good optimizing compiler should include
a wide variety of optimization options. The designer should be able to apply the
optimizations selectively to different parts of the program as appropriate. Optimization
strategies need to be carefully considered because some may achieve advanced speed, but
do so at the sacrifice of substantial additional memory. Successful optimization in tightly
designed applications requires carefully balanced, selective application. Aggressive
optimization should be applied to the parts of the program that are executed most
frequently, while the remainder of the program should be optimized with less-aggressive
(but still much faster) compiler strategies.

(Word Count: 1,998)



